3D deformation and dynamics of the human cadaver abdomen under seatbelt loading.
نویسندگان
چکیده
According to accident analysis, submarining is responsible for most of the frontal car crash AIS 3+ abdominal injuries sustained by restrained occupants. Submarining is characterized by an initial position of the lap belt on the iliac spine. During the crash, the pelvis slips under the lap belt which loads the abdomen. The order of magnitude of the abdominal deflection rate was reported by Uriot to be approximately 4 m/s. In addition, the use of active restraint devices such as pretensioners in recent cars lead to the need for the investigation of Out-Of-Position injuries. OOP is defined by an initial position of the lap belt on the abdomen instead of the pelvis resulting in a direct loading of the abdomen during pretensioning and the crash. In that case, the penetration speed of the belt into the abdomen was reported by Trosseille to be approximately 8 to 12 m/s. The aim of this study was to characterize the response of the human abdomen in submarining and OOP. A total of 8 PMHS abdomens were loaded using a lap belt. In order to investigate the injury mechanisms, the abdominal deflection rate and the compression were imposed such that they were not correlated. The specimens were seated upright in a fixed back configuration. The lap belt was placed at the level of the mid-umbilicus, between the iliac crest and the 12th rib. The belt was pulled horizontally along the sides of the specimens causing a symmetrical loading of the abdomen. In addition to the local parameters such as the belt and back forces or the belt displacements, the 3D external deformation of the abdomen was recorded. The forces measured between the back of the cadaver and the seat showed that a mass effect should be taken into account in the abdominal behaviour in addition to viscosity. The back force was greater than the belt force in low speed (submarining like) tests while it was lower for high-speed (OOP like) tests. A lumped parameter model was developed to confirm the experimental results and to be able to compare the load penetration characteristics to the results reported in the literature. The injury outcomes are provided and compared to all the published data. The PMHS sustained MAIS2-3 abdominal injuries in the low speed tests and MAIS2-4 injuries in the high speed tests. Finally, the dynamic 3D deformation of the abdominal wall was reconstructed and is provided for further validation of finite element models of the human abdomen.
منابع مشابه
Numerical Study on the Crushing Behavior of Square Tubes Under Three Dimensional Oblique Loading
This study aims to numerically investigate on the crashworthiness of thin-walled square tubes by consideration of 3-D oblique loading. In this type of loading, direction of loading is defined by using two spatial angles relative to the position of the tube. To this aim, finite element (FE) analysis is employed to simulate the loading for 8 different numerical models with different loading orien...
متن کاملConcept Study of Adaptive Seatbelt Load Limiter Using Magnetorheological Fluid
Most current seatbelt load limiter technologies could only offer three or fewer predetermined patterns of seatbelt restraint force. However, researches have shown that, to better realize adaptive protection to different occupants under different crash severities, a continuously and real-time adjustable load limiter may be one step further. This concept could be especially favorable to vulnerabl...
متن کاملNumerical and Experimental Study on Ratcheting Behavior of Steel Cylindrical Shells with/without Cutout Under Cyclic Combined and Axial Loading
Ratcheting behavior of steel 304L cylindrical shell under cyclic combined and axial loading are investigated in this paper, numerically. Cylindrical shells were fixed oblique at angle of 20° and normal with respect to the longitudinal direction of the shell and subjected to force-controlled cycling with non-zero mean force, which causes the accumulation of plastic deformation or ratcheting beha...
متن کاملReconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot
This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...
متن کاملEffect of Defects on Mechanical Properties of Graphene under Shear Loading Using Molecular Dynamic Simulation
Graphene sheet including single vacancy, double vacancy and Stone-Wales with armchair and zigzag structure was simulated using molecular dynamics simulation. The effect of defects on shear’s modulus, shear strength and fracture strain was investigated. Results showed that these shear properties reduce when the degrees of all kinds of defects increase. The dangling bond in SV and DV defected gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stapp car crash journal
دوره 52 شماره
صفحات -
تاریخ انتشار 2008